Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Mamm Genome ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488938

RESUMO

The Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) remains a public health concern and a subject of active research effort. Development of pre-clinical animal models is critical to study viral-host interaction, tissue tropism, disease mechanisms, therapeutic approaches, and long-term sequelae of infection. Here, we report two mouse models for studying SARS-CoV-2: A knock-in mAce2F83Y,H353K mouse that expresses a mouse-human hybrid form of the angiotensin-converting enzyme 2 (ACE2) receptor under the endogenous mouse Ace2 promoter, and a Rosa26 conditional knock-in mouse carrying the human ACE2 allele (Rosa26hACE2). Although the mAce2F83Y,H353K mice were susceptible to intranasal inoculation with SARS-CoV-2, they did not show gross phenotypic abnormalities. Next, we generated a Rosa26hACE2;CMV-Cre mouse line that ubiquitously expresses the human ACE2 receptor. By day 3 post infection with SARS-CoV-2, Rosa26hACE2;CMV-Cre mice showed significant weight loss, a variable degree of alveolar wall thickening and reduced survival rates. Viral load measurements confirmed inoculation in lung and brain tissues of infected Rosa26hACE2;CMV-Cre mice. The phenotypic spectrum displayed by our different mouse models translates to the broad range of clinical symptoms seen in the human patients and can serve as a resource for the community to model and explore both treatment strategies and long-term consequences of SARS-CoV-2 infection.

2.
Hum Mol Genet ; 33(1): 33-37, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37738569

RESUMO

Inhaled nitric oxide (NO) therapy has been reported to improve lung growth in premature newborns. However, the underlying mechanisms by which NO regulates lung development remain largely unclear. NO is enzymatically produced by three isoforms of nitric oxide synthase (NOS) enzymes. NOS knockout mice are useful tools to investigate NO function in the lung. Each single NOS knockout mouse does not show obvious lung alveolar phenotype, likely due to compensatory mechanisms. While mice lacking all three NOS isoforms display impaired lung alveolarization, implicating NO plays a pivotal role in lung alveolarization. Argininosuccinate lyase (ASL) is the only mammalian enzyme capable of synthesizing L-arginine, the sole precursor for NOS-dependent NO synthesis. ASL is also required for channeling extracellular L-arginine into a NO-synthetic complex. Thus, ASL deficiency (ASLD) is a non-redundant model for cell-autonomous, NOS-dependent NO deficiency. Here, we assessed lung alveolarization in ASL-deficient mice. Hypomorphic deletion of Asl (AslNeo/Neo) results in decreased lung alveolarization, accompanied with reduced level of S-nitrosylation in the lung. Genetic ablation of one copy of Caveolin-1, which is a negative regulator of NO production, restores total S-nitrosylation as well as lung alveolarization in AslNeo/Neo mice. Importantly, NO supplementation could partially rescue lung alveolarization in AslNeo/Neo mice. Furthermore, endothelial-specific knockout mice (VE-Cadherin Cre; Aslflox/flox) exhibit impaired lung alveolarization at 12 weeks old, supporting an essential role of endothelial-derived NO in the enhancement of lung alveolarization. Thus, we propose that ASLD is a model to study NO-mediated lung alveolarization.


Assuntos
Argininossuccinato Liase , Óxido Nítrico , Animais , Camundongos , Argininossuccinato Liase/genética , Óxido Nítrico Sintase/genética , Arginina/genética , Camundongos Knockout , Pulmão , Isoformas de Proteínas , Mamíferos
3.
JCI Insight ; 8(17)2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37490345

RESUMO

Nitric oxide (NO) is a critical signaling molecule that has been implicated in the pathogenesis of neurocognitive diseases. Both excessive and insufficient NO production have been linked to pathology. Previously, we have shown that argininosuccinate lyase deficiency (ASLD) is a novel model system to investigate cell-autonomous, nitric oxide synthase-dependent NO deficiency. Humans with ASLD are at increased risk for developing hyperammonemia due to a block in ureagenesis. However, natural history studies have shown that individuals with ASLD have multisystem disease including neurocognitive deficits that can be independent of ammonia. Here, using ASLD as a model of NO deficiency, we investigated the effects of NO on brain endothelial cells in vitro and the blood-brain barrier (BBB) in vivo. Knockdown of ASL in human brain microvascular endothelial cells (HBMECs) led to decreased transendothelial electrical resistance, indicative of increased cell permeability. Mechanistically, treatment with an NO donor or inhibition of Claudin-1 improved barrier integrity in ASL-deficient HBMECs. Furthermore, in vivo assessment of a hypomorphic mouse model of ASLD showed increased BBB leakage, which was partially rescued by NO supplementation. Our results suggest that ASL-mediated NO synthesis is required for proper maintenance of brain microvascular endothelial cell functions as well as BBB integrity.


Assuntos
Acidúria Argininossuccínica , Camundongos , Animais , Humanos , Acidúria Argininossuccínica/genética , Acidúria Argininossuccínica/metabolismo , Acidúria Argininossuccínica/patologia , Óxido Nítrico/metabolismo , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Claudinas/metabolismo , Modelos Animais de Doenças
4.
Dis Model Mech ; 16(8)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37486182

RESUMO

SLC7A7 deficiency, or lysinuric protein intolerance (LPI), causes loss of function of the y+LAT1 transporter critical for efflux of arginine, lysine and ornithine in certain cells. LPI is characterized by urea cycle dysfunction, renal disease, immune dysregulation, growth failure, delayed bone age and osteoporosis. We previously reported that Slc7a7 knockout mice (C57BL/6×129/SvEv F2) recapitulate LPI phenotypes, including growth failure. Our main objective in this study was to characterize the skeletal phenotype in these mice. Compared to wild-type littermates, juvenile Slc7a7 knockout mice demonstrated 70% lower body weights, 87% lower plasma IGF-1 concentrations and delayed skeletal development. Because poor survival prevents evaluation of mature knockout mice, we generated a conditional Slc7a7 deletion in mature osteoblasts or mesenchymal cells of the osteo-chondroprogenitor lineage, but no differences in bone architecture were observed. Overall, global Slc7a7 deficiency caused growth failure with low plasma IGF-1 concentrations and delayed skeletal development, but Slc7a7 deficiency in the osteoblastic lineage was not a major contributor to these phenotypes. Future studies utilizing additional tissue-specific Slc7a7 knockout models may help dissect cell-autonomous and non-cell-autonomous mechanisms underlying phenotypes in LPI.


Assuntos
Fator de Crescimento Insulin-Like I , Animais , Camundongos , Sistema y+L de Transporte de Aminoácidos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Camundongos Knockout
5.
Hum Mol Genet ; 31(16): 2820-2830, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35377455

RESUMO

Loss-of-function mutations in DDRGK1 have been shown to cause Shohat type spondyloepimetaphyseal dysplasia (SEMD). In zebrafish, loss of function of ddrgk1 leads to defects in early cartilage development. Ddrgk1-/- mice show delayed mesenchymal condensation in the limb buds and early embryonic lethality. Mechanistically, Ddrgk1 interacts with Sox9 and reduces ubiquitin-mediated proteasomal degradation of Sox9 protein. To investigate the cartilage-specific role of DDRGK1, conditional knockout mice were generated by intercrossing Prx1-Cre transgenic mice with Ddrgkfl/fl mice to delete its expression in limb mesenchymal cells. Mutant mice showed progressive severe shortening of the limbs and joint abnormalities. The growth plate showed disorganization with shortened proliferative zone and enlarged hypertrophic zone. In correlation with these findings, Sox9 and Col2a1 protein levels were decreased, while Col10a1 expression was expanded. These data demonstrate the importance of Ddrgk1 during growth plate development. In contrast, deletion of Ddrgk1 with the osteoblast-specific Osteocalcin-Cre and Leptin receptor-Cre lines did not show bone phenotypes, suggesting that the effect on limb development is cartilage-specific. To evaluate the role of DDRGK1 in cartilage postnatal homeostasis, inducible Agc1-CreERT2; Ddrgklfl/fl mice were generated. Mice in which Ddrgk1 was deleted at 3 months of age showed disorganized growth plate, with significant reduction in proteoglycan deposition. These data demonstrate a postnatal requirement for Ddrgk1 in maintaining normal growth plate morphology. Together, these findings highlight the physiological role of Ddrgk1 in the development and maintenance of the growth plate cartilage. Furthermore, these genetic mouse models recapitulate the clinical phenotype of short stature and joint abnormalities observed in patients with Shohat type SEMD.


Assuntos
Lâmina de Crescimento , Peixe-Zebra , Animais , Cartilagem , Diferenciação Celular , Condrócitos/metabolismo , Condrogênese , Lâmina de Crescimento/metabolismo , Camundongos , Camundongos Transgênicos , Osteocondrodisplasias
6.
J Clin Invest ; 132(7)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35113812

RESUMO

BACKGROUNDCurrently, there is no disease-specific therapy for osteogenesis imperfecta (OI). Preclinical studies demonstrate that excessive TGF-ß signaling is a pathogenic mechanism in OI. Here, we evaluated TGF-ß signaling in children with OI and conducted a phase I clinical trial of TGF-ß inhibition in adults with OI.METHODSHistology and RNA-Seq were performed on bones obtained from children. Gene Ontology (GO) enrichment assay, gene set enrichment analysis (GSEA), and Ingenuity Pathway Analysis (IPA) were used to identify dysregulated pathways. Reverse-phase protein array, Western blot, and IHC were performed to evaluate protein expression. A phase I study of fresolimumab, a TGF-ß neutralizing antibody, was conducted in 8 adults with OI. Safety and effects on bone remodeling markers and lumbar spine areal bone mineral density (LS aBMD) were assessed.RESULTSOI bone demonstrated woven structure, increased osteocytes, high turnover, and reduced maturation. SMAD phosphorylation was the most significantly upregulated GO molecular event. GSEA identified the TGF-ß pathway as the top activated signaling pathway, and IPA showed that TGF-ß1 was the most significant activated upstream regulator mediating the global changes identified in OI bone. Treatment with fresolimumab was well-tolerated and associated with increases in LS aBMD in participants with OI type IV, whereas participants with OI type III and VIII had unchanged or decreased LS aBMD.CONCLUSIONIncreased TGF-ß signaling is a driver pathogenic mechanism in OI. Anti-TGF-ß therapy could be a potential disease-specific therapy, with dose-dependent effects on bone mass and turnover.TRIAL REGISTRATIONClinicalTrials.gov NCT03064074.FUNDINGBrittle Bone Disorders Consortium (U54AR068069), Clinical Translational Core of Baylor College of Medicine Intellectual and Developmental Disabilities Research Center (P50HD103555) from National Institute of Child Health and Human Development, USDA/ARS (cooperative agreement 58-6250-6-001), and Sanofi Genzyme.


Assuntos
Osteogênese Imperfeita , Adulto , Densidade Óssea , Osso e Ossos/metabolismo , Criança , Humanos , Vértebras Lombares/metabolismo , Osteogênese Imperfeita/tratamento farmacológico , Osteogênese Imperfeita/genética , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
7.
Hum Mol Genet ; 31(8): 1325-1335, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-34740257

RESUMO

Type V collagen is a regulatory fibrillar collagen essential for type I collagen fibril nucleation and organization and its deficiency leads to structurally abnormal extracellular matrix (ECM). Haploinsufficiency of the Col5a1 gene encoding α(1) chain of type V collagen is the primary cause of classic Ehlers-Danlos syndrome (EDS). The mechanisms by which this initial insult leads to the spectrum of clinical presentation are not fully understood. Using transcriptome analysis of skin and Achilles tendons from Col5a1 haploinsufficient (Col5a1+/-) mice, we recognized molecular alterations associated with the tissue phenotypes. We identified dysregulation of ECM components including thrombospondin-1, lysyl oxidase, and lumican in the skin of Col5a1+/- mice when compared with control. We also identified upregulation of transforming growth factor ß1 (Tgf-ß) in serum and increased expression of pSmad2 in skin from Col5a1+/- mice, suggesting Tgf-ß dysregulation is a contributor to abnormal wound healing and atrophic scarring seen in classic EDS. Together, these findings support altered matrix to cell signaling as a component of the pathogenesis of the tissue phenotype in classic EDS and point out potential downstream signaling pathways that may be targeted for the treatment of this disease.


Assuntos
Síndrome de Ehlers-Danlos , Animais , Colágeno/genética , Colágeno Tipo V/genética , Modelos Animais de Doenças , Síndrome de Ehlers-Danlos/genética , Síndrome de Ehlers-Danlos/patologia , Haploinsuficiência , Camundongos , Fator de Crescimento Transformador beta/genética
8.
Psychol Health Med ; 27(2): 312-324, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33779436

RESUMO

The aims of the study were to assess the contribution of resilience, coping style, and COVID-19 stress on the quality of life (QOL) in frontline health care workers (HCWs). The study was a cross-sectional surveyperformed among 309 HCWs in a tertiaryhospital during the outbreak of COVID-19 in China. Data were collected through an anonymous, self-rated questionnaire, including demographic data, a 10-item COVID-19 stress questionnaire, Generic QOL Inventory-74, Connor-Davidson Resilience Scale, and the Simplified Coping Style Questionnaire. Hierarchical regression was used to analyse the relationship between the study variables and the QOL. Among the 309 participants, resilience and active coping were positively correlated with the QOL (P<0.001), whereas, working in confirmed case wards, COVID-19 stress, and passive coping were negatively correlated with the QOL (P<0.001). Resilience and the active coping were negatively correlated with COVID-19 stress (P<0.001). Resilience, coping style,and COVID-19 stressaccounted for 32%, 13%, and 8% of the variance in predicting the Global QOL, respectively. In conclusion, working in confirmed COVID-19 case wards and COVID-19 stress impaired the QOL in HCWs. Psychological intervention to improve the resilience and coping style, and reduce COVID-19 stress are important in improving the QOL and mental health of HCWs.


Assuntos
COVID-19 , Resiliência Psicológica , Adaptação Psicológica , COVID-19/epidemiologia , Estudos Transversais , Pessoal de Saúde/psicologia , Humanos , Qualidade de Vida , SARS-CoV-2
9.
Am J Hum Genet ; 108(9): 1710-1724, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34450031

RESUMO

Coatomer complexes function in the sorting and trafficking of proteins between subcellular organelles. Pathogenic variants in coatomer subunits or associated factors have been reported in multi-systemic disorders, i.e., coatopathies, that can affect the skeletal and central nervous systems. We have identified loss-of-function variants in COPB2, a component of the coatomer complex I (COPI), in individuals presenting with osteoporosis, fractures, and developmental delay of variable severity. Electron microscopy of COPB2-deficient subjects' fibroblasts showed dilated endoplasmic reticulum (ER) with granular material, prominent rough ER, and vacuoles, consistent with an intracellular trafficking defect. We studied the effect of COPB2 deficiency on collagen trafficking because of the critical role of collagen secretion in bone biology. COPB2 siRNA-treated fibroblasts showed delayed collagen secretion with retention of type I collagen in the ER and Golgi and altered distribution of Golgi markers. copb2-null zebrafish embryos showed retention of type II collagen, disorganization of the ER and Golgi, and early larval lethality. Copb2+/- mice exhibited low bone mass, and consistent with the findings in human cells and zebrafish, studies in Copb2+/- mouse fibroblasts suggest ER stress and a Golgi defect. Interestingly, ascorbic acid treatment partially rescued the zebrafish developmental phenotype and the cellular phenotype in Copb2+/- mouse fibroblasts. This work identifies a form of coatopathy due to COPB2 haploinsufficiency, explores a potential therapeutic approach for this disorder, and highlights the role of the COPI complex as a regulator of skeletal homeostasis.


Assuntos
Osso e Ossos/metabolismo , Complexo I de Proteína do Envoltório/genética , Proteína Coatomer/genética , Deficiências do Desenvolvimento/genética , Deficiência Intelectual/genética , Osteoporose/genética , Animais , Ácido Ascórbico/farmacologia , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Criança , Pré-Escolar , Complexo I de Proteína do Envoltório/deficiência , Proteína Coatomer/química , Proteína Coatomer/deficiência , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Deficiências do Desenvolvimento/diagnóstico por imagem , Deficiências do Desenvolvimento/metabolismo , Deficiências do Desenvolvimento/patologia , Embrião não Mamífero , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Regulação da Expressão Gênica no Desenvolvimento , Complexo de Golgi , Haploinsuficiência , Humanos , Deficiência Intelectual/diagnóstico por imagem , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Masculino , Camundongos , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Osteoporose/patologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Índice de Gravidade de Doença , Peixe-Zebra
10.
Am J Med Genet A ; 185(8): 2315-2324, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33949769

RESUMO

Gillespie syndrome (GLSP) is characterized by bilateral symmetric partial aplasia of the iris presenting as a fixed and large pupil, cerebellar hypoplasia with ataxia, congenital hypotonia, and varying levels of intellectual disability. GLSP is caused by either biallelic or heterozygous, dominant-negative, pathogenic variants in ITPR1. Here, we present a 5-year-old male with GLSP who was found to have a heterozygous, de novo intronic variant in ITPR1 (NM_001168272.1:c.5935-17G > A) through genome sequencing (GS). Sanger sequencing of cDNA from this individual's fibroblasts showed the retention of 15 nucleotides from intron 45, which is predicted to cause an in-frame insertion of five amino acids near the C-terminal transmembrane domain of ITPR1. In addition, qPCR and cDNA sequencing demonstrated reduced expression of both ITPR1 alleles in fibroblasts when compared to parental samples. Given the close proximity of the predicted in-frame amino acid insertion to the site of previously described heterozygous, de novo, dominant-negative, pathogenic variants in GLSP, we predict that this variant also has a dominant-negative effect on ITPR1 channel function. Overall, this is the first report of a de novo intronic variant causing GLSP, which emphasizes the utility of GS and cDNA studies for diagnosing patients with a clinical presentation of GLSP and negative clinical exome sequencing.


Assuntos
Aniridia/diagnóstico , Aniridia/genética , Ataxia Cerebelar/diagnóstico , Ataxia Cerebelar/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Receptores de Inositol 1,4,5-Trifosfato/genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Íntrons , Mutação , Alelos , Pré-Escolar , Análise Mutacional de DNA , Fácies , Estudos de Associação Genética/métodos , Humanos , Receptores de Inositol 1,4,5-Trifosfato/química , Imageamento por Ressonância Magnética , Masculino , Fenótipo , Avaliação de Sintomas , Sequenciamento Completo do Genoma
11.
Int J Soc Psychiatry ; 67(6): 656-663, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33100114

RESUMO

BACKGROUND: The pandemic of coronavirus disease (Covid-19) seriously impacts the health and well-being of all of us. AIMS: We aim to assess the psychological impact of Covid-19 on frontline health care workers (HCWs), including anxiety, depression and stress of threat of the disease. METHOD: The study was a cross-sectional survey among the frontline HCWs in a hospital at Jinan, China. Data were collected through an anonymous, self-rated questionnaire, including basic demographic data, a 10-item Covid-19 stress questionnaire, the Self-Rating Anxiety Scale (SAS) and the Self-Rating Depression Scale (SDS). The risk and rate of anxiety, depression and stress of Covid-19 were estimated. RESULTS: Among the 309 participants, there were 88 (28.5%) with anxiety and 172 (56.0%) with depression. Multivariate logistic regression analyses showed that age ⩽ 30 years, age > 30 to 45 years, working in confirmed case isolation wards, and worrying about disinfection measures being not sufficient were independently associated with anxiety with an odds ratio (95% confidence interval, CI) of 4.4 (1.6-12.2), 3.1 (1.1-8.8), 2.3 (1.4-4.0) and 2.5 (1.5-4.3), respectively; age ⩽ 30 years, age > 30 to 45 years, nurse and worrying about disinfection measure being not sufficient were independently associated with depression with an odds ratio (95% CI) of 3.8 (1.8-7.8), 2.7 (1.3-5.7), 2.5 (1.1-5.6) and 2.1 (1.3-3.5), respectively. CONCLUSIONS: A high prevalence of anxiety and depression was found among frontline HCWs during the COVID-19 outbreak. More psychological care should be given to young staffs and nurses. Measures to prevent professional exposure is important for HCWs' physical and mental health.


Assuntos
COVID-19 , Saúde da População , Adulto , Ansiedade/epidemiologia , Estudos Transversais , Depressão/epidemiologia , Surtos de Doenças , Pessoal de Saúde , Humanos , Pessoa de Meia-Idade , SARS-CoV-2
12.
J Clin Invest ; 131(5)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33373331

RESUMO

Previous studies have shown that nitric oxide (NO) supplements may prevent bone loss and fractures in preclinical models of estrogen deficiency. However, the mechanisms by which NO modulates bone anabolism remain largely unclear. Argininosuccinate lyase (ASL) is the only mammalian enzyme capable of synthesizing arginine, the sole precursor for nitric oxide synthase-dependent (NOS-dependent) NO synthesis. Moreover, ASL is also required for channeling extracellular arginine to NOS for NO production. ASL deficiency (ASLD) is thus a model to study cell-autonomous, NOS-dependent NO deficiency. Here, we report that loss of ASL led to decreased NO production and impairment of osteoblast differentiation. Mechanistically, the bone phenotype was at least in part driven by the loss of NO-mediated activation of the glycolysis pathway in osteoblasts that led to decreased osteoblast differentiation and function. Heterozygous deletion of caveolin 1, a negative regulator of NO synthesis, restored NO production, osteoblast differentiation, glycolysis, and bone mass in a hypomorphic mouse model of ASLD. The translational significance of these preclinical studies was further reiterated by studies conducted in induced pluripotent stem cells from an individual with ASLD. Taken together, our findings suggest that ASLD is a unique genetic model for studying NO-dependent osteoblast function and that the NO/glycolysis pathway may be a new target to modulate bone anabolism.


Assuntos
Acidúria Argininossuccínica/metabolismo , Osso e Ossos/metabolismo , Diferenciação Celular , Glicólise , Ácido Nítrico/metabolismo , Osteoblastos/metabolismo , Adolescente , Adulto , Animais , Acidúria Argininossuccínica/genética , Acidúria Argininossuccínica/patologia , Osso e Ossos/patologia , Criança , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Osteoblastos/patologia
13.
Hum Mol Genet ; 29(13): 2171-2184, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32504080

RESUMO

Lysinuric protein intolerance (LPI) is an inborn error of cationic amino acid (arginine, lysine, ornithine) transport caused by biallelic pathogenic variants in SLC7A7, which encodes the light subunit of the y+LAT1 transporter. Treatments for the complications of LPI, including growth failure, renal disease, pulmonary alveolar proteinosis, autoimmune disorders and osteoporosis, are limited. Given the early lethality of the only published global Slc7a7 knockout mouse model, a viable animal model to investigate global SLC7A7 deficiency is needed. Hence, we generated two mouse models with global Slc7a7 deficiency (Slc7a7em1Lbu/em1Lbu; Slc7a7Lbu/Lbu and Slc7a7em1(IMPC)Bay/em1(IMPC)Bay; Slc7a7Bay/Bay) using CRISPR/Cas9 technology by introducing a deletion of exons 3 and 4. Perinatal lethality was observed in Slc7a7Lbu/Lbu and Slc7a7Bay/Bay mice on the C57BL/6 and C57BL/6NJ inbred genetic backgrounds, respectively. We noted improved survival of Slc7a7Lbu/Lbu mice on the 129 Sv/Ev × C57BL/6 F2 background, but postnatal growth failure occurred. Consistent with human LPI, these Slc7a7Lbu/Lbu mice exhibited reduced plasma and increased urinary concentrations of the cationic amino acids. Histopathological assessment revealed loss of brush border and lipid vacuolation in the renal cortex of Slc7a7Lbu/Lbu mice, which combined with aminoaciduria suggests proximal tubular dysfunction. Micro-computed tomography of L4 vertebrae and skeletal radiographs showed delayed skeletal development and suggested decreased mineralization in Slc7a7Lbu/Lbu mice, respectively. In addition to delayed skeletal development and delayed development in the kidneys, the lungs and liver were observed based on histopathological assessment. Overall, our Slc7a7Lbu/Lbu mouse model on the F2 mixed background recapitulates multiple human LPI phenotypes and may be useful for future studies of LPI pathology.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Sistema y+L de Transporte de Aminoácidos/genética , Rim/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico por imagem , Erros Inatos do Metabolismo dos Aminoácidos/patologia , Sistema y+L de Transporte de Aminoácidos/deficiência , Aminoácidos/genética , Animais , Modelos Animais de Doenças , Éxons/genética , Humanos , Rim/patologia , Camundongos , Camundongos Knockout , Fenótipo , Microtomografia por Raio-X
14.
J Bone Miner Res ; 35(6): 1132-1148, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32053224

RESUMO

Osteogenesis imperfecta (OI) is a genetic bone dysplasia characterized by bone deformities and fractures caused by low bone mass and impaired bone quality. OI is a genetically heterogeneous disorder that most commonly arises from dominant mutations in genes encoding type I collagen (COL1A1 and COL1A2). In addition, OI is recessively inherited with the majority of cases resulting from mutations in prolyl-3-hydroxylation complex members, which includes cartilage-associated protein (CRTAP). OI patients are at an increased risk of fracture throughout their lifetimes. However, non-union or delayed healing has been reported in 24% of fractures and 52% of osteotomies. Additionally, refractures typically go unreported, making the frequency of refractures in OI patients unknown. Thus, there is an unmet need to better understand the mechanisms by which OI affects fracture healing. Using an open tibial fracture model, our study demonstrates delayed healing in both Col1a2 G610c/+ and Crtap -/- OI mouse models (dominant and recessive OI, respectively) that is associated with reduced callus size and predicted strength. Callus cartilage distribution and chondrocyte maturation were altered in OI, suggesting accelerated cartilage differentiation. Importantly, we determined that healed fractured tibia in female OI mice are biomechanically weaker when compared with the contralateral unfractured bone, suggesting that abnormal OI fracture healing OI may prime future refracture at the same location. We have previously shown upregulated TGF-ß signaling in OI and we confirm this in the context of fracture healing. Interestingly, treatment of Crtap -/- mice with the anti-TGF-ß antibody 1D11 resulted in further reduced callus size and predicted strength, highlighting the importance of investigating dose response in treatment strategies. These data provide valuable insight into the effect of the extracellular matrix (ECM) on fracture healing, a poorly understood mechanism, and support the need for prevention of primary fractures to decrease incidence of refracture and deformity in OI patients. © 2020 American Society for Bone and Mineral Research.


Assuntos
Osteogênese Imperfeita , Animais , Colágeno , Colágeno Tipo I/genética , Proteínas da Matriz Extracelular , Feminino , Consolidação da Fratura , Humanos , Camundongos , Chaperonas Moleculares , Osteogênese Imperfeita/genética
15.
JCI Insight ; 5(4)2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-31990680

RESUMO

BACKGROUNDLiver disease in urea cycle disorders (UCDs) ranges from hepatomegaly and chronic hepatocellular injury to cirrhosis and end-stage liver disease. However, the prevalence and underlying mechanisms are unclear.METHODSWe estimated the prevalence of chronic hepatocellular injury in UCDs using data from a multicenter, longitudinal, natural history study. We also used ultrasound with shear wave elastography and FibroTest to evaluate liver stiffness and markers of fibrosis in individuals with argininosuccinate lyase deficiency (ASLD), a disorder with high prevalence of elevated serum alanine aminotransferase (ALT). To understand the human observations, we evaluated the hepatic phenotype of the AslNeo/Neo mouse model of ASLD.RESULTSWe demonstrate a high prevalence of elevated ALT in ASLD (37%). Hyperammonemia and use of nitrogen-scavenging agents, 2 markers of disease severity, were significantly (P < 0.001 and P = 0.001, respectively) associated with elevated ALT in ASLD. In addition, ultrasound with shear wave elastography and FibroTest revealed increased echogenicity and liver stiffness, even in individuals with ASLD and normal aminotransferases. The AslNeo/Neo mice mimic the human disorder with hepatomegaly, elevated aminotransferases, and excessive hepatic glycogen noted before death (3-5 weeks of age). This excessive hepatic glycogen is associated with impaired hepatic glycogenolysis and decreased glycogen phosphorylase and is rescued with helper-dependent adenovirus expressing Asl using a liver-specific (ApoE) promoter.CONCLUSIONOur results link urea cycle dysfunction and impaired hepatic glucose metabolism and identify a mouse model of liver disease in the setting of urea cycle dysfunction.TRIAL REGISTRATIONThis study has been registered at ClinicalTrials.gov (NCT03721367, NCT00237315).FUNDINGFunding was provided by NIH, Burroughs Wellcome Fund, NUCDF, Genzyme/ACMG Foundation, and CPRIT.


Assuntos
Argininossuccinato Liase/metabolismo , Hepatopatias/metabolismo , Glicogênio Hepático/metabolismo , Alanina Transaminase/sangue , Animais , Doença Crônica , Modelos Animais de Doenças , Humanos , Hepatopatias/complicações , Hepatopatias/enzimologia , Estudos Longitudinais , Camundongos , Distúrbios Congênitos do Ciclo da Ureia/complicações
16.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 27(4): 1154-1158, 2019 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-31418372

RESUMO

OBJECTIVE: To investigate the expression and pathogenesis of IL-17 in bone marrow blood of multiple myeloma (MM) patients. METHODS: Expression levels of IL-6, TNF-α and IL-17 in bone marrow serum of 20 MM patients and 20 control subjects were detected by ELISA, and correlation analysis was performed to analyze the correlation IL-17 with IL-6 and TNF-α. The effect of IL-17 on the proliferation of MM cells treated with different concentration of IL-17 was detected by cell prollferation and toxicity tesis. The morphological changes of RAW264.7 cells treated with IL-17 were observed by tartrate resistant acid phosphatase (TRAP) staining. RESULTS: The levels of IL-17, IL-6 and TNF- in the bone marrow of MM patients were all higher than those of the normal control group (P<0.05). The IL-17 level positively correlated with IL-6 and TNF-α levels (r=0.6045, P<0.01 and r=0.627, P<0.01). Cell proliferation and toxicity tests confirmed that IL-17 can promote the proliferation of multiple myeloma cells. TRAP staining revealed that IL-17 could induce differentiate of RAW264.7 cells into multinuclear giant cells. CONCLUSION: IL-17 may be involved in the pathogenesis of MM and promotes the proliferation of tumor cells, and induces the activation of osteoclasts leading to increased bone destruction.


Assuntos
Mieloma Múltiplo , Medula Óssea , Células da Medula Óssea , Humanos , Interleucina-17 , Osteoclastos , Fator de Necrose Tumoral alfa
17.
Hum Gene Ther ; 30(2): 225-235, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30070147

RESUMO

Osteoarthritis (OA) is a degenerative disease of synovial joints characterized by progressive loss of articular cartilage, subchondral bone remodeling, and intra-articular inflammation with synovitis that results in chronic pain and motor impairment. Despite the economic and health impacts, current medical therapies are targeted at symptomatic relief of OA and fail to alter its progression. Given the complexity of OA pathogenesis, we hypothesized that a combinatorial gene therapy approach, designed to inhibit inflammation with interleukin-1 receptor antagonist (IL-1Ra) while promoting chondroprotection using lubricin (PRG4), would improve preservation of the joint compared to monotherapy alone. Employing two surgical techniques to model mild, moderate and severe posttraumatic OA, we found that combined delivery of helper-dependent adenoviruses (HDVs), expressing IL-1Ra and PRG4, preserved articular cartilage better than either monotherapy in both models as demonstrated by preservation of articular cartilage volume and surface area. This improved protection was associated with increased expression of proanabolic and cartilage matrix genes together with decreased expression of catabolic genes and inflammatory mediators. In addition to improvements in joint tissues, this combinatorial gene therapy prolonged protection against thermal hyperalgesia compared to either monotherapy. Taken together, our results show that a combinatorial strategy is superior to monotherapeutic approaches for treatment of posttraumatic OA.


Assuntos
Adenoviridae , Cartilagem Articular , Terapia Genética , Hiperalgesia , Proteína Antagonista do Receptor de Interleucina 1 , Osteoartrite , Proteoglicanas , Transdução Genética , Ferimentos e Lesões , Animais , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Modelos Animais de Doenças , Humanos , Hiperalgesia/etiologia , Hiperalgesia/metabolismo , Hiperalgesia/patologia , Hiperalgesia/terapia , Proteína Antagonista do Receptor de Interleucina 1/biossíntese , Proteína Antagonista do Receptor de Interleucina 1/genética , Masculino , Camundongos , Osteoartrite/genética , Osteoartrite/metabolismo , Osteoartrite/patologia , Osteoartrite/terapia , Proteoglicanas/biossíntese , Proteoglicanas/genética , Ferimentos e Lesões/complicações , Ferimentos e Lesões/metabolismo , Ferimentos e Lesões/patologia , Ferimentos e Lesões/terapia
18.
Mar Drugs ; 16(12)2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-30572615

RESUMO

Five new oxygenated sesquiterpenes, molestins A⁻D (1, 3⁻5) and epi-gibberodione (2), three new cyclopentenone derivatives, ent-sinulolides C, D, and F ((+)-9⁻(+)-11), one new butenolide derivative, ent-sinulolide H ((+)-13), and one new cembranolide, molestin E (14), together with 14 known related metabolites (6⁻8, (⁻)-9⁻(⁻)-11, (±)-12, (⁻)-13, 15⁻19) were isolated from the Paracel Islands soft coral Sinularia cf. molesta. The structures and absolute configurations were elucidated based on comprehensive spectroscopic analyses, quantum chemical calculations, and comparison with the literature data. Compound 5 is the first example of a norsesquiterpene with a de-isopropyl guaiane skeleton isolated from the genus Sinularia. Molestin E (14) exhibited cytotoxicities against HeLa and HCT-116 cell lines with IC50 values of 5.26 and 8.37 µM, respectively. Compounds 4, 5, and 8 showed significant inhibitory activities against protein tyrosine phosphatase 1B (PTP1B) with IC50 values of 218, 344, and 1.24 µM, respectively.


Assuntos
Antozoários/química , Citotoxinas/química , Sesquiterpenos/química , 4-Butirolactona/análogos & derivados , 4-Butirolactona/química , 4-Butirolactona/isolamento & purificação , 4-Butirolactona/farmacologia , Animais , Linhagem Celular Tumoral , Ciclopentanos/química , Ciclopentanos/isolamento & purificação , Ciclopentanos/farmacologia , Células HCT116 , Células HeLa , Humanos , Conformação Molecular , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Sesquiterpenos/isolamento & purificação , Sesquiterpenos/farmacologia
19.
JBMR Plus ; 2(4): 235-239, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30283904

RESUMO

The heritable disorder osteogenesis imperfecta (OI) is characterized by bone fragility and low bone mass. OI type VI is an autosomal recessive form of the disorder with moderate to severe bone fragility. OI type VI is caused by mutations in the serpin peptidase inhibitor, clade F, member 1 (SERPINF1), the gene coding for pigment epithelium-derived factor (PEDF). Here, we report a patient with OI type VI caused by a novel homozygous intronic variant in SERPINF1 identified by whole-exome sequencing (WES). The mutation was not identified using a low bone mass gene panel based on next-generation sequencing. This variant creates a novel consensus splice donor site (AGGC to AGGT) in intron 4. Analysis of cDNA generated from fibroblasts revealed retention of a 32-bp intronic fragment between exons 4 and 5 in the cDNA, a result of alternative splicing from the novel splice-donor site. As a result, the aberrant insertion of this intronic fragment generated a frameshift pathogenic variant and induced nonsense-mediated decay. Furthermore, gene expression by quantitative PCR showed SERPINF1 expression was dramatically reduced in patient fibroblasts, and PEDF level was also significantly reduced in the patient's plasma. In conclusion, we report a novel homozygous variant that generates an alternative splice-donor in intron 4 of SERPINF1 which gives rise to severe bone fragility. The work also demonstrates clinical utility of WES analysis, and consideration of noncoding variants, in the diagnostic setting of rare bone diseases. © 2018 The Authors. JBMR Plus is published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.

20.
Am J Hum Genet ; 103(2): 276-287, 2018 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-30075114

RESUMO

Primary hypertension is a major risk factor for ischemic heart disease, stroke, and chronic kidney disease. Insights obtained from the study of rare Mendelian forms of hypertension have been invaluable in elucidating the mechanisms causing primary hypertension and development of antihypertensive therapies. Endothelial cells play a key role in the regulation of blood pressure; however, a Mendelian form of hypertension that is primarily due to endothelial dysfunction has not yet been described. Here, we show that the urea cycle disorder, argininosuccinate lyase deficiency (ASLD), can manifest as a Mendelian form of endothelial-dependent hypertension. Using data from a human clinical study, a mouse model with endothelial-specific deletion of argininosuccinate lyase (Asl), and in vitro studies in human aortic endothelial cells and induced pluripotent stem cell-derived endothelial cells from individuals with ASLD, we show that loss of ASL in endothelial cells leads to endothelial-dependent vascular dysfunction with reduced nitric oxide (NO) production, increased oxidative stress, and impaired angiogenesis. Our findings show that ASLD is a unique model for studying NO-dependent endothelial dysfunction in human hypertension.


Assuntos
Argininossuccinato Liase/genética , Acidúria Argininossuccínica/genética , Células Endoteliais/patologia , Hipertensão/genética , Adolescente , Animais , Pressão Sanguínea/genética , Células Cultivadas , Criança , Modelos Animais de Doenças , Endotélio Vascular/patologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Neovascularização Patológica/genética , Óxido Nítrico/genética , Estresse Oxidativo/genética , Distúrbios Congênitos do Ciclo da Ureia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...